|
|
Автор: Скворцов В. А.
Издательство: МЦНМО / Московский центр непрерывного математического образования
Год издания: 2002
isbn: 5-94057-002-Х
Количество страниц: 24
Язык: русский
Формат: DJVU
Размер: 2 Мб
Каталожный номер: 100048
|
В математике часто рассматриваются множества, между элементами ("точками") которых определено расстояние (метрика). Такие множества называют метрическими пространствами, если выполнены соответствующие аксиомы. Существует много разных способов определить расстояние в разных множествах. В брошюре обсуждается, как можно измерять расстояние не только между точками на плоскости, но и между кривыми, множествами, функциями. Важным примером расстояния между кривыми является хаусдорфова метрика. Многие метрические пространства разительно отличаются от привычной евклидовой плоскости. Примером метрики с необычными свойствами может служить р-адическая метрика, относящаяся к классу так называемых неархимедовых метрик. Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором 17 февраля 2001 года на Малом мехмате МГУ для школьников 9-11 классов. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей...
Ключевые теги: математика |
|