|
|
Автор: И.Г. Петровский
Издательство: Наука, ГИФМЛ, МГУ
Год издания: 1961
Количество страниц:
Язык: русский
Формат: DJVU
Размер: 11.56 Мб
Каталожный номер: 82183
|
Лекции по теории обыкновенных дифференциальных уравнений Лекции об уравнениях с частными производными Лекции по теории интегральных уравнений
Лекции по теории обыкновенных дифференциальных уравнений
Книга представляет собой учебник по курсу обыкновенных дифференциальных уравнений. Тщательно продуманное изложение дало возможность в небольшом объеме вместить обширный материал. Более детально и строго, чем в других руководствах, рассмотрены уравнения простых типов. Подробно изложены общие теоремы о разрешимости уравнений и систем уравнений с непрерывными правыми частями. Теория линейных уравнений сопровождается оригинальным изложением канонической формы систем. Книга включает главу об автономных системах и добавление, содержащее теорию линейных и нелинейных уравнений с частными производными 1-го порядка. Большое количество задач значительно расширяет содержание книги.
Лекции об уравнениях с частными производными
Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические, параболические и гиперболические. Для каждого типа исследуются вопросы существования и единственности решения и его непрерывной зависимости от заданных начальных и граничных условий. Книга может быть рекомендована студентам математических и естественно-научных специальностей, в которых требуется знать и использовать уравнения в частных производных.
Лекции по теории интегральных уравнений
Классический труд выдающегося ученого-математика, академика И.Г.Петровского (1901-1973) основан на курсе лекций, прочитанных им в МГУ им. М.В.Ломоносова в 1946 году. В нем рассматриваются линейные интегральные уравнения, формулируются определения, примеры и типичные задачи, сводящиеся к ним, подробно дается теория интегральных уравнений Фредгольма, описываются уравнения Вольтерра и интегральные уравнения с действительными симметрическими ядрами.
Рекомендуется студентам университетов — будущим математикам и физикам, а также аспирантам и специалистам.
Ключевые теги: математика, учебник, алгебра, |
|